Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(9): 1208-1220, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365259

RESUMO

Human societies depend on marine ecosystems, but their degradation continues. Toward mitigating this decline, new and more effective ways to precisely measure the status and condition of marine environments are needed alongside existing rebuilding strategies. Here, we provide an overview of how sensors and wearable technology developed for humans could be adapted to improve marine monitoring. We describe barriers that have slowed the transition of this technology from land to sea, update on the developments in sensors to advance ocean observation and advocate for more widespread use of wearables on marine organisms in the wild and in aquaculture. We propose that large-scale use of wearables could facilitate the concept of an 'internet of marine life' that might contribute to a more robust and effective observation system for the oceans and commercial aquaculture operations. These observations may aid in rationalizing strategies toward conservation and restoration of marine communities and habitats.


Assuntos
Ecossistema , Dispositivos Eletrônicos Vestíveis , Humanos , Organismos Aquáticos , Oceanos e Mares , Tecnologia
2.
Glob Chall ; 4(4): 2000001, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257383

RESUMO

While the outstanding properties of graphene have attracted a lot of attention, one of the major bottlenecks of its widespread usage is its availability in large volumes. Laser printing graphene on polyimide films is an efficient single-step fabrication process that can remedy this issue. A laser-printed, flexible pressure sensor is developed utilizing the piezoresistive effect of 3D porous graphene. The pressure sensors performance can be easily adjusted via the geometrical parameters. They have a sensitivity in the range of 1.23 × 10-3 kPa and feature a high resolution with a detection limit of 10 Pa in combination with an extremely wide dynamic range of at least 20 MPa. They also provide excellent long-term stability of at least 15 000 cycles. The biocompatibility of laser-induced graphene is also evaluated by cytotoxicity assays and fluorescent staining, which show an insignificant drop in viability. Polymethyl methacrylate coating is particularly useful for underwater applications, protecting the sensors from biofouling and shunt currents, and enable operation at a depth of 2 km in highly saline Red Sea water. Due to its features, the sensors are a prime choice for multiple healthcare applications; for example, they are used for heart rate monitoring, plantar pressure measurements, and tactile sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...